

2022 Integrated Resource Plan (IRP)

Public Advisory Meeting #2 4/12/2022

Agenda and Introductions

Stewart Ramsay, Managing Executive, Vanry & Associates

2022 IRP

Agenda

Time	Торіс	Speakers
Morning Starting at 10:00 AM	Virtual Meeting Protocols and Safety, Schedule	Chad Rog
	Meeting #1 Recap	Erik Miller
	Load Scenarios	Mike Russ Eric Fox,
	MPS Results & DSM Resources	Jeffrey Hu
Break 12:00 PM – 12:30 PM	Lunch	
Afternoon Starting at 12:30 PM	Current Generation Portfolio Overview	Kristina Lu
	Replacement Resource Assumptions	Erik Miller
	IRP Portfolio Matrix & Scenario Framework	Erik Miller
	Final Q&A and Next Steps	

*Distribution System Planning was included on a prior distributed agenda. This topic will be covered in Public Advisory Meeting #3.

gers, Senior Manager, Regulatory Affairs, AES Indiana

, Manager, Resource Planning, AES Indiana

so, Forecast Consultant, Itron Director, Forecasting Solutions, Itron

uber, Overall Project Manager and MPS Lead, GDS Associates

und, President & CEO, AES Indiana

, Manager, Resource Planning, AES Indiana

, Manager, Resource Planning, AES Indiana

Virtual Meeting Protocols and Safety

Chad Rogers, Senior Manager, Regulatory Affairs, AES Indiana

IRP Team Introductions

AES Indiana Leadership Team

Kristina Lund, President & CEO, AES Indiana Aaron Cooper, Chief Commercial Officer, AES Indiana Brandi Davis-Handy, Chief Public Relations Officer, AES Indiana Ahmed Pasha, Chief Financial Officer, AES Indiana Tom Raga, Vice President Government Affairs, AES Indiana Judi Sobecki, General Counsel and Chief Regulatory Officer, AES Indiana

AES Indiana IRP Planning Team

Joe Bocanegra, Load Forecasting Analyst, AES Indiana Erik Miller, Manager, Resource Planning, AES Indiana Scott Perry, Manager, Regulatory Affairs, AES Indiana Chad Rogers, Senior Manager, Regulatory Affairs, AES Indiana Brent Selvidge, Engineer, AES Indiana Will Vance, Senior Analyst, AES Indiana

AES Indiana IRP Partners

Patrick Burns, PV Modeling Lead and Regulatory/IRP Support, Brightline Group Eric Fox, Director, Forecasting Solutions, Itron Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates Jordan Janflone, EV Modeling Forecasting, GDS Associates Stewart Ramsey, Managing Executive, Vanry & Associates Mike Russo, Forecast Consultant, Itron Jacob Thomas, Market Research and End-Use Analysis Lead, GDS Associates Melissa Young, Demand Response Lead, GDS Associates

AES Indiana Legal Team

Nick Grimmer, Indiana Regulatory Counsel, AES Indiana Teresa Morton Nyhart, Counsel, Barnes & Thornburg LLP

Welcome to Today's Participants

ACES	Hoos
Advanced Energy Economy	IBEV
Barnes & Thornburg LLP	India
Boardwalk Pipelines	India
Butler University	India
CCR	IUPL
CenterPoint Energy	NuS
Citizens Action Coalition	Offic
City of Indianapolis	Purd
Clean Grid Alliance	Rolls
Develop Indy Indy Chamber	Sierr
Duke Energy	Wart
E&C	
EDP Renewables NA	
Energy Futures Group	č
Faith in Place	Ind
Fluence Energy	
GDS Associates	
Hallador Energy	

sier Energy W LOCAL UNION 1395 ana Chamber ana Energy Association ana Utility Regulatory Commission UI Scale Power ce of Utility Consumer Counselor due - State Utility Forecasting Group s-Royce/ISS ra Club

tsila

and members of the AES liana team and the public!

Virtual Meeting Best Practices

Questions

- \rightarrow Your candid feedback and input is an integral part to the IRP process.
- \rightarrow Questions or feedback will be taken at the end of each section.
- \rightarrow Feel free to submit a question in the chat function at any time and we will ensure those questions are addressed.

 \rightarrow All lines are muted upon entry.

 \rightarrow For those using audio via Teams, you can unmute by selecting the microphone icon.

 \rightarrow If you are dialed in from a phone, press *6 to unmute.

 \rightarrow Video is not required. To minimize bandwidth, please refrain from using video unless commenting during the meeting.

Audio

Video

AES Purpose & Values

Accelerating the future of energy, together.

Highest standards

All together

Make your virtual environment safer

Secure Your Accounts Use unique, complex passphrases and enable two-factor authentication wherever possible.

2.

Think before you click on a link, file, or attachment on your laptop and mobile.

3. **Know Your Network Protect** your home network by changing default passwords; use a **VPN** when conducting sensitive transactions or on public WiFi.

2022 IRP

Protect your Device Patch your devices regularly and be mindful of connecting unauthorized hardware like USB drives.

5.

Share Data Responsibly Control your social media settings and be mindful when posting publicly.

6

Be Safe by Being **Prepared Know** the cyberattack types and report anything suspicious.

Meeting #1 Recap

Erik Miller, Manager, Resource Planning, AES Indiana

Updated 2022 IRP Timeline

= Preferred Resource Portfolio selected

AES Indiana is available for additional touchpoints with stakeholders to discuss IRP-related topics.

Issue Generation RFP - Date TBD in 2022

Public Advisory Schedule

Topics for meetings 3-5 are subject to change depending on modeling progress.

2022 Integrated Resource Plan (IRP)

Load Scenarios

Load Scenarios High/Low Load Model Drivers

Mike Russo, Forecast Consultant, Itron

Modeling Approach

- → Bottom-up Modeling Approach
- → Estimate rate-class level sales and customer models from historical billed sales data
- → Sales/energy driven by households, economic forecasts, expected weather conditions, price, and end-use efficiency improvements. Enduse demand drives system peak demand

Monthly sales and customer models are estimated for:

- \rightarrow Residential
- \rightarrow Commercial
- \rightarrow Industrial
- \rightarrow Other (Lighting)

Monthly peak model driven by end-use energy forecasts

The baseline forecast excludes behind the meter solar, electric vehicle loads, and future EE program savings

Economic Based Scenarios

Baseline Forecast

 \rightarrow Baseline forecast models use economic concepts from Moody's Analytics Baseline Forecast, Aug 2021. Moody's defines their baseline forecast as "the probability that the economy will perform better than this projection is equal to 50%, the same as the probability that it will perform worse".

Low Forecast Scenario

 \rightarrow Based on Moody's S3: Alternative Scenario 3 – Downside – 90th Percentile: In this scenario, there is a 90% probability that the economy will perform better, broadly speaking, and a 10% probability that it will perform worse.

High Forecast

 \rightarrow Based on Moody's S1: Alternative Scenario 1 – Upside – 10th Percentile: In this scenario, there is a 10% probability that the economy will perform better, broadly speaking, and a 90% probability that it will perform worse.

Construction of Scenario Economic Drivers

- \rightarrow Growth rates from the Moody's Low/High scenarios are applied to the Baseline economic variables beginning in January 2022
- \rightarrow The chosen methodology ensures the growth rates used are less than or equal to the Baseline growth rates in the Low case and greater than or equal to the Baseline growth rates in the High case.
 - If this adjustment were not made Low case growth rates would be greater than the baseline in certain years, as seen below. This could result in the Low load forecast exceeding the Baseline load forecast.

Residential Economic Drivers

→ Moody Analytics scenarios growth rates are noticeably different in the near-term but revert back to long-term growth rates.

C&I Economic Drivers

2022 IRP

Forecast Scenarios

Energy & Peak Forecast

- → Models updated to include actuals through Dec 2021
- Forecasts excludes energy efficiency programs (EE), electric vehicles, and solar impact
- \rightarrow Low forecast results in a reduction of 461,928 MWh and 84 MW by 2042
- \rightarrow High forecast results in an increase of 139,270 MWh and 26 MW by 2042

c vehicles, and solar impact MW by 2042 5 MW by 2042

2022 Integrated Resource Plan (IRP)

DSM Market Potential Study Introduction

GDS Associates, Inc. ENGINEERS & CONSULTANTS

brightline

MPS Results & DSM Resources

Introduction to the DSM Process in the IRP

IURC Rules - 170 IAC 4-7-8-c-4 "Analysis showing Supply-side resources and demand-side resources have been evaluated on a consistent and comparable basis."

2024–2026 AES Indiana DSM Program Implementation

Agenda

→ MPS Recap

→ Energy Efficiency Potential

- Overview of results
- Sector-level results
- Program potential
- Demand Response Potential
 - Overview of results
 - Sector-level results
- Developing DSM IRP Inputs

DSM Market Potential Study

MPS Recap

Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates

2022 IRP

Overall Market Potential Study Process

TECHNOLOGY CHARACTERISTICS

Energy, Capacity, and Therm Unit Savings Saturation Shares Codes and Standard Updates Applicability Interactions

COST-EFFECTIVENESS

Load Shapes Avoided Cost Benefits Measure Costs/Price Trends

Energy Efficiency Potential Types

TECHNICAL POTENTIAL

All technically feasible measures are incorporated to provide a theoretical maximum potential.

ECONOMIC POTENTIAL

All measures are screened for cost-effectiveness using the UCT Test. Only cost-effective measures are included.

Types of Energy Efficiency Potential

ACHIEVABLE POTENTIAL

Cost-effective energy efficiency potential that can practically be attained in a real-world program delivery case, assuming that a certain level of market penetration can be attained.

MAXIMUM ACHIEVABLE POTENTIAL (MAP)

Incentives set up to 100% of incremental cost

REALISTIC **ACHIEVABLE POTENTIAL (RAP)**

Incentives based on historical levels

Key Methodological Assumptions for MAP/RAP

Method for determining both the short-term and long-term adoption levels by key market segments

Historical incentives are a key driver of the Realistic Achievable Potential (RAP) scenario

Non-Incentive costs are included at both the MAP/RAP level

Program **Mapping & NTG**

Evaluated NTG results were incorporated to assess Program RAP

Willingness to Participate (WTP) Results

DSM Market Potential Study Results

Energy Efficiency (EE) Potential

Initial Comments

Overall Comments (all sectors):

- → All savings are gross
- Economic Screening is the UCT Test using current incentive levels and no administrative costs
 In the second s
- →Measure assumptions (savings / costs) are based on a review of current evaluated savings as well as savings from approved sources (i.e., EM&V results, Illinois TRM, MEMD, etc.)
- Technical & Economic potential is a phased-in potential; i.e. opportunities are dependent on stock turnover
- AP scenario is based on current incentive levels and associated long-term adoption rates (informed by primary market research)
- AP scenario examines ability to move incentive levels higher than historical; does not examine lowering incentives for measures that do not currently screen as cost-effective.

Overview of Results – Cumulative Annual

33

Residential Sector Results

Residential Maximum Achievable Potential (MAP)

Residential cumulative annual maximum achievable potential as a percentage of forecasted sales in 2042 (compared to 35% by 2039 in 2019 MPS; difference attributable to lower economic potential, updated saturation data and adoption rates)

Residential Realistic Achievable Potential (RAP)

Residential cumulative annual realistic achievable potential as a percentage of forecasted sales in 2042 (compared to 24% by 2039 in 2019 MPS; difference attributable to lower economic potential, updated saturation data and adoption rates)

Residential Incremental Annual Savings by End Use

C&I Opt-Outs

2022 IRP

C&I "Opt-Out Sales" Adjustment

→ MPS uses only "eligible" sales for electric energy efficiency potential, removing sales from C&I customers who opt-out of the energy efficiency rider.

→ 28% of Commercial Sales were from opt-out customers in 2022

→ 76% of Industrial Sales were from opt-out customers in 2022

→ Savings (as a % of sales) are relative to "eligible" sales in subsequent slides

C&I Sector Results

C&I Maximum Achievable Potential (MAP)

**Other includes potential associated with cooking, compressed air, behavioral and other miscellaneous loads (elevators, vending machines, etc.)

C&I cumulative annual maximum achievable potential as a percentage of forecasted sales in 2042 (compared to 36% by 2039 in 2019 MPS ; primary difference in assumed MAP incentive assumptions and associated adoption levels)

C&I Realistic Achievable Potential (RAP)

**Other includes potential associated with cooking, compressed air, behavioral and other miscellaneous loads (elevators, vending machines, etc.)

C&I cumulative annual maximum achievable potential as a percentage of forecasted sales in 2042 *(compared to 19% by 2039 in 2019 MPS)*

C&I Incremental Annual Savings by End Use

Developing Program Potential from RAP

Key differences between RAP and Program Potential:

Program Potential applies the most recent evaluated net-to-gross ("NTG") ratios to the RAP (overall reduction due to NTG <1.0). Resid

Efficie

Home

Schoo

Incom

Applia

Multif

Dema

C&I P

Prescr

Custo

Strate

ential Program	NTG Ratio
ent Products	80%
e Energy Reports	100%
ol Kits	63%
ne-Qualified Weatherization	89%
ance Recycling	70%
family	98%
nd Response	100%
rograms	NTG Ratio
riptive	74%
m	80%
gic Energy Management	100%

Comparison of RAP and Program Potential

Annual Residential Program Potential

Annual C&I Program Potential

Program Potential Non-Incentive Costs

Non-Incentive costs were developed using recent 2021-2022 actual program cost data. Program non-incentive costs were calculated on a gross \$ per first-year kWh saved. Non-incentive costs were developed for each sector, and by program when possible.

Historical non-incentive cost categories include:

- Implementation
- Utility admin
- Indirect
- EM&V

Residential Program Potential Annual Costs

Incentives Admin

C&I Program Potential Annual Costs

DSM Market Potential Study Results

Demand Response (DR) Potential

Demand Response Overview

Measures Considered

Demand Response includes Direct Load Control (DLC), Behavior DR, Time of Use (TOU) Rates, Capacity Bidding, Demand Bidding and Interruptible Agreements.

- \rightarrow In the residential sector, DLC includes central air conditioning, room air conditioning, electric space heating, water heating, smart appliances, and pool pumps
- \rightarrow In the nonresidential sector, DLC includes air conditioning, electric space heating, lighting, and water heating

DR Hierarchies

DR analysis will account for interactive effects as additional types of demand response programs are added to the mix. The hierarchy for demand response programs in the base case for the four market sectors is as follows:

Residential

- **Direct Load Control** 1.
- **Behavior DR** 2.
- TOU 3.

Small C&I

- **Direct Load Control** 1.
- **Capacity Bidding** 2.
- TOU 3.

Large C&I

- Interruptible 1. Agreements
- **Capacity Bidding** 2.
- 3. TOU

Demand Response Programs Considered

- →Direct Load Control ("DLC") Central ACs
- →DLC Room ACs
- →DLC Smart Appliances
- →DLC Water Heaters
- →DLC Electric Space Heat
- →DLC Lighting

- →Battery Energy Storage
- →Electric Vehicle Charging
- Interruptible Agreements
- Demand Bidding
- →Capacity Bidding
- →Time of Use Rates
- →Behavior DR

Residential Demand Response MAP/RAP Results

briahtline

C&I Demand Response MAP/RAP Results

Peak MW Potential Savings in 2042

Annual Demand Response (RAP – by Sector)

INCREMENTAL ANNUAL

Peak MW Potential Savings

brightline

GROUP

2022 IRP

Annual Demand Response Budgets (by Sector)

DSM Market Potential Study

Developing DSM IRP Inputs

Reference Case

- \rightarrow EE Inputs for reference case will align with the Program RAP Potential
- \rightarrow EE Inputs will be provided over three different vintages
 - 2024-2026 (3 years)
 - 2026-2028 (3 years)
 - 2029-2042 (13 years)
- \rightarrow For 2024-2026 Vintage, EE Inputs will be bundled to closely resemble program offerings
 - For remaining vintages, EE Inputs will be aggregated at the sector level
- \rightarrow EE Costs will include utility costs (incentives and non-incentive costs) and will be adjusted to reflect the NPV impacts of T&D benefits.
- \rightarrow 2023 will be "hard coded" to align with current approved DSM Plan savings and costs

Time Differentiated Savings

- \rightarrow Within a bundle/vintage, the EE Savings are broken out by end-use
- \rightarrow Saving by end-use are mapped to 8,760 end-use load shape data, developed by National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Lab (LBL).
- Residential sector includes 33 end-uses
- Nonresidential sector includes 11 end-uses
- \rightarrow Hourly savings shapes are provided so that the model captures the timing of savings relative to the AES Indiana system and peak periods.

Example Commercial Loadshape Data

Day of Year

IRP Inputs – Demand Response

- →Bundles for demand response follow the same vintages as Energy Efficiency
- Demand response bundles created for four categories
- Residential DLC
- Residential Rates
- C&I DLC/Aggregator
- C&I Rates
- →DR bundles will include savings for both summer and winter peak, with summer peak savings potentially generally more significant

Break for Lunch

Current Generation Portfolio Overview

Kristina Lund, President & CEO, AES Indiana

Current Portfolio

2022 IRP

Gradual change to the AES Indiana portfolio over time

2009-2015

Signed 100 MW PPA at Hoosier Wind Park in NW Indiana, 200 MW PPA at Lakefield Wind Farm in Minnesota and 96 MW PPA for solar in Indianapolis through Rate REP 2016

Retired 260 MW of coal at Eagle Valley

2016

Finalized refuel of 630 MW of coalfired generation at Harding Street to natural gas

2018

Eagle Valley 671 MW Gas-Fired **Combined Cycle Plant Completed**

2021-2023

Retired (Unit 1) 220 MW of coal at Petersburg; Plans to retire (Unit 2) 401 MW of coal at Petersburg in 2023

2023 - 2024

Plans to complete 195 MW Hardy Hills Solar project and 250 MW + 180 MWh Petersburg **Energy Center** solar + storage project

Capabilities and Infrastructure

Largest sites have valuable capabilities and infrastructure for the energy transition

Petersburg

Experienced, skilled labor force, land, interconnection, water rights, water treatment, natural gas pipelines already present on site

Harding Street Experienced, skilled labor force, land, interconnection, location near load center, rail, water rights

AES Indiana seeks to partner with Pike County and City of Indianapolis to drive customer value and community impact of Petersburg and Harding Street Sites.

Eagle Valley

New plant, highly efficient, flexible for future grid changes

Replacement Resource Assumptions

Erik Miller, Manager, Resource Planning, AES Indiana

Commercially Available Replacement Resources

DSM/EE

→ EE & DR Measures bundled into traunches for planning model selection

Wind

→ Land-Based Wind

Solar

- → Utility-Scale
- \rightarrow C&I
- \rightarrow Residential

Storage

- → Utility-Scale standalone
- → Solar + Storage

Natural Gas

- \rightarrow CCGT
- \rightarrow CT
- → Reciprocating Engine/ICE
- → Pete Refuel

Key Replacement Resource Assumptions for IRP Modeling

Replacement Resource Assumptions are the key inputs that the planning model uses for selecting replacement resources when energy or capacity is needed.

Replacement Resource Assumptions include:

- \rightarrow Overnight Capital Cost to construct (/kW) Costs associated with development and construction of resource
- \rightarrow Operating Cost:
 - Fixed Operation & Maintenance (FOM) Costs incurred whether plant is operating or not, e.g. staff cost, regular maintenance, administrative costs
 - Variable Operation & Maintenance (VOM) Costs associated with electricity production, e.g. repair and replacement of parts
- \rightarrow Operating Characteristics:

Operating Characteristics		
Solar & Wind	Storage	CT or CCGT (Natural Gas)
Generation Profiles	Ramp Rates	Heat Rates
Effective Load Carrying Capability (ELCC)	Capacity Accreditation	Ramp Rates
MW Limits	MW and MWh Limits	Capacity Accreditation
Asset Useful Life	Asset Useful Life	MW Limits
		Asset Useful Life

Methodology for Replacement Resource Cost Assumptions

Overview

- \rightarrow AES Indiana used a combination of Sargent & Lundy's (S&L) RFP review, Bloomberg New Energy Finance (BNEF), National Renewable Energy Labs (NREL) and Wood Mackenzie data to benchmark the starting year assumptions for replacement resources in this IRP.
- > Replacement Resource capital cost forecasts were calculated by averaging forecasts from NREL, BNEF and Wood Mackenzie or from S&L.

Sargent & Lundy's (S&L) review of AES Indiana's 2019 RFP

- \rightarrow AES Indiana contracted S&L to administer the Company's 2019 All-source RFP for generation.
- > As follow up to this work, S&L summarized the cost and operating components for the resources included in the 2019 All-source RFP to inform the 2022 IRP.
- \rightarrow To supplement this review, S&L also reviewed and sourced their internal databases and a comprehensive list of public data sources.
- \rightarrow Resources reviewed:
 - Solar
 - Wind
 - Solar + Storage
 - Standalone 4-hr Storage
 - Combustion Turbine (Frame and Aeroderivative)
 - Combined Cycle Gas Turbine
 - Reciprocating Engine

- \rightarrow Cost components reviewed:
 - Capital Cost (\$/kWac)
 - Interconnection Cost (\$/kWac)
 - Cost of Tax Equity (\$/kWac)
 - FOM (\$/kWac)
 - VOM (\$/MWh)

- Capacity Factor (%)
- Curtailment (%)
- Property Tax (\$/kWac)
- Max Capacity per year (MW)

2022 All-Source Generation RFP

AES Indiana is conducting an all-source RFP

- Positions AES Indiana to efficiently procure generation consistent with final IRP Preferred Resource Portfolio
- \rightarrow Informs IRP process in considering Replacement Resource Costs sensitivities
- \rightarrow RFP offers requested for Commercial Operation Date (COD) of 2025-2027
- Incorporate invitation for projects leveraging remaining uncommitted Petersburg Unit 2 injection rights
- → Issue RFP mid-April

Department of Commerce Anti-Dumping/Countervailing Duties (AD/CVD) investigation

- \rightarrow Preliminary decision 150 days
- \rightarrow Repercussions for solar industry
- \rightarrow Creates uncertainty for developers particularly in near-term
- \rightarrow Issue resolution for 2025-2027 COD projects address uncertainty around solar in RFP

Sources for Replacement Resource Cost Assumptions

Primary Assumption	Wind	Solar	Storage	Solar + Storage	CCGT	Frame CT	Aero CT	Reciprocating Engine
Capital Cost	BNEF, NREL, Wood Mack & 2020 RFP	BNEF, NREL, Wood Mack & 2020 RFP	BNEF, Wood Mack & 2020 RFP	BNEF, NREL, Wood Mack & 2020 RFP	BNEF, NREL, Wood Mack & 2020 RFP	BNEF, NREL, Wood Mack & 2020 RFP	Sargent & Lundy	Sargent & Lundy
Fixed O&M	Company Assets	Company Assets	Company Assets	Company Assets	Company Assets	Company Assets	Sargent & Lundy	Sargent & Lundy
Variable O&M	N/A	N/A	N/A	N/A	Company Assets	Company Assets	Sargent & Lundy	Sargent & Lundy
Operating Characteristic	NREL System Advisory Model (SAM)	NREL System Advisory Model (SAM)	NREL 2021 ATB	NREL 2021 ATB	Company Assets	Company Assets	Sargent & Lundy	Sargent & Lundy
Other Key Assumption								
ELCC / Capacity Credit	Horizons Energy / MISO	Horizons Energy / MISO	Horizons Energy / MISO	Horizons Energy / MISO	MISO	MISO	MISO	MISO
Grid Connection Cost	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy	Sargent & Lundy
Tax Equity Cost	Sargent & Lundy	Sargent & Lundy	N/A	Sargent & Lundy	N/A	N/A	N/A	N/A

Wind Capital and Operating Costs

Variable O&M (\$/MWh)

Note: Capital Cost estimates presented here are without federal tax credits. Federal tax credits will be included in modeling based on the IRP scenario assumptions.

aes Indiana

Note: Confidential cost forecasts in chart include forecasts from NREL, Wood Mackenzie and BNEF

30 \$

Wind Parameters

- Location: Indiana
- Annual Capacity Factor:
 33.6 40.4%
- Source Profile: NREL System Advisory Model (SAM)
- Project Size: 50 MW ICAP
- Useful Life: 30 years
- Summer ELCC (2025): 7.1%; Source: Horizons Energy
- Winter ELCC: 20%; Source: MISO RAN

Wind ELCC						
100% —						
90% —						
80% —						
70% —						
60% —						
50% —						
40% —						
30% —						
20% —						
10% —						
0%	023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039	2040 2041	2042			

Solar Capital and Operating Costs

Capital Cost (\$/kW)	Fixed O&M (\$/kW)
\$1,111	\$12

2022 IRP

Note: Confidential cost forecasts in chart include forecasts from NREL, Wood Mackenzie and BNEF

Variable O&M (\$/MWh)

\$0

Note: Capital Cost estimates presented here are without federal tax credits. Federal tax credits will be included in modeling based on the IRP scenario assumptions.

Solar Parameters

- Location: Petersburg, Indiana
- Annual Capacity Factor: 24.5%
- Source Profile: NREL System Advisory Model (SAM)
- Project Size: 25 MW ICAP
- Useful Life: 35 years
- Summer ELCC (2025): 58.7%; Source: Horizon Energy
- Winter ELCC: 0%; Source: MISO RAN

	Solar ELCC					
100%						
90%						
80%						
70%						
60%						
50%						
40%						
30%						
20%						
10%						
0%	2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042					
	-Solar (Summer) -Solar (Winter)					

*Summer ELCC forecast presented in chart is from the Horizon Custom Reference Case – ELCC forecast will vary by custom scenario

Storage Capital and Operating Costs

78

Variable O&M (\$/MWh)

Note: Capital Cost estimates presented here are without federal tax credits. Federal tax credits will be included in modeling based on the IRP scenario assumptions.

27 \$

Storage Parameters

- Location: Indianapolis, Indiana
- Project Size: 20 MW ICAP | 80 MWh (4-hour)
- Round Trip Efficiency (RTE): 85%
- Useful Life: 20 years
- Summer/Winter Capacity Accreditation: 95% (19 MW)

	Storage Capacity Accreditation
100%	
90%	
80%	
70%	
60%	
50%	
40%	
30%	
20%	
10%	
0%	
070	2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 —Storage (Summer) —Storage (Winter)

Note: 6-hour Storage also be modeled and scaled off of the 4-hour Storage assumptions

Solar + Storage Capital and Operating Costs

2022 IRP

80

Variable O&M (\$/MWh)

\$0

Note: Capital Cost estimates presented here are without federal tax credits. Federal tax credits will be included in modeling based on the IRP scenario assumptions.

Solar + Storage Parameters

- Location: Petersburg, Indiana
- **System:** DC Coupled Solar + Storage System, Storage charges exclusively from the solar array
- Solar Component: Identical to standalone solar (25 MW ICAP)
- Storage Component: 12.5 MW ICAP | 50 MWh
- **Synergies:** 4.3% reduction in capital costs, 2% improvement of RTE
- Summer ELCC (2025): 100%
- Winter ELCC: 48%

	Hybrid (Solar+Storage) ELCC						
100%							
90%							
80%							
70%							
60%							
50%							
40%							
30%							
20%							
10%							
0%							
	2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 —Hybrid (Summer) —Hybrid (Winter)						

*Summer forecast presented in chart above is from the Horizon Custom Reference Case – forecast will vary by custom scenario

CCGT Capital and Operating Costs

Capital Cost (\$/kW)	Fixed O&M (\$/kW)
\$1,026	\$32

Note: Confidential cost forecasts in chart include forecasts from NREL, Wood Mackenzie and BNEF

\$/kW Nominal

CCGT Parameters

- Project Size: 325 MW ICAP
- Heat Rate at Max Economic Load: 6,700 Btu/kWh
- Useful Life: 30 years
- Summer/Winter Capacity Credit: 94.2% static

Frame Combustion Turbine Capital and Operating Costs

Note: Confidential cost forecasts in chart include forecasts from NREL, Wood Mackenzie and BNEF

Frame Combustion Turbine Parameters

- Project Size: 100 MW ICAP
- Heat Rate at Max Economic Load: 10,000 Btu/kWh
- Useful Life: 20 years
- Summer/Winter Capacity Credit: 95.6% static

Aero CT and Recip Engine Capital and Operating Costs

	Capital Cost (\$/kW)	Fixed O&M (\$/kW)	Variable O&M (\$/MWh)
Aero CT	\$1,335	\$36	\$5
Recip	\$1,283	\$46	\$6

Capital Cost Forecast

Aero CT and Reciprocating Engine Parameters

Aero Combustion Turbine

- Project Size: 90 MW ICAP
- Heat Rate at Max Economic Load: 8,200 Btu/kWh
- Useful Life: 20 years
- Summer/Winter Capacity Credit: 95.6% static

Reciprocating Engine

- Project Size: 54 MW ICAP
- Heat Rate at Max Economic Load: 7,400 Btu/kWh
- Useful Life: 20 years
- Summer/Winter Capacity Credit: 95.6% static

Petersburg Refuel Capital and Operating Costs

Petersburg Units 3 & 4 Refuel to Natural Gas

- \rightarrow Low capital cost (~\$100/kW)
- \rightarrow Refueling will require gas infrastructure upgrade not included in capital cost above

Modeling Assumptions

Costs:

- \rightarrow Capital expenditure estimated based on cost to refuel Harding Street 5, 6, 7
- \rightarrow Engineering analysis performed to understand the cost for gas infrastructure upgrade

Potential Refueling Benefits

- \rightarrow Reduces carbon intensity (lower capacity factor and emission rate for ST gas similar to Harding St)
- \rightarrow Dispatchable resource that positions AES Indiana well with new MISO seasonal capacity construct

Refuel of Petersburg Units 3 & 4 Parameters

\rightarrow Petersburg Unit 3

- Project Size: 526 MW ICAP
- Heat Rate at Max Economic Load: 10,800 Btu/kWh
- Variable O&M: < \$0.50/MWh
- Fixed O&M: 65% reduction from coal Fixed O&M
- Useful Life: 20 years
- Summer/Winter Capacity Credit: 90.9% static

\rightarrow Petersburg Unit 4

- Project Size: 526 MW ICAP
- Heat Rate at Max Economic Load: 10,800 Btu/kWh
- Variable O&M: < \$0.50/MWh
- Fixed O&M: 65% reduction from coal Fixed O&M
- Useful Life: 20 years
- Summer/Winter Capacity Credit: 94.1% static

IRP Portfolio Matrix Introduction

Erik Miller, Manager, Resource Planning, AES Indiana

Portfolio Matrix: Strategies vs. Scenarios

AES Indiana's Portfolio Matrix considers four generation portfolio <u>Strategies</u> across four <u>Scenarios</u>

Strategies

- \rightarrow AES Indiana's potential future strategies for the generation portfolio.
- Retirement dates, capital expenditures & cost treatments are anticipated and defined for each strategy and included in the planning model.

Scenarios

- → Scenarios are views of the future defined by external influences like political outcomes, economics, regulations, etc.
- → In the planning model, each scenario will have a unique set of input assumptions that correspond to the external influences defining the scenario.

*Note that AES Indiana will also use stochastics & sensitivities to assess risk around particular variables, e.g. replacement resource costs.

IRP Strategies

Generation Portfolio Strategies

No Changes to Existing Portfolio

Petersburg Refuel

One Petersburg unit retires early (2026)

Both Petersburg units retire early (2026 & 2028)

- \rightarrow Status quo

- \rightarrow One unit retired early in 2026

- \rightarrow One unit retires early in 2026
- \rightarrow The other unit retires early in 2028

 \rightarrow Units remain in service through useful life of 2042

 \rightarrow Petersburg Unit 3 & 4 refueled to Natural Gas in 2025 \rightarrow Natural gas pipeline already present on site

 \rightarrow The other unit remains in service through useful life of 2042 \rightarrow Replacement capacity starting in 2026

Rationale for Predefined Portfolio Strategies

Generation Portfoilo Strategy	
No Changes to Existing Portfolio	Provides port comparison 8
Petersburg Refuel	Earliest possi to execute th
One Petersburg Unit Retires Early (2026)	Earliest possi time to procu
Both Petersburg Units Retire Early (2026 & 2028)	Staggering sp lead time to p

Predefined strategies provide for comparison and evaluation of portfolios with the earliest possible exit from coal vs portfolios with coal through the entire planning period.

Note: To support decision making, AES Indiana will perform capacity expansion analysis without specified dates that allows the Encompass model to fully optimize retirements and replacements; however, outcomes from this analysis may not be viable and/or reasonable.

Rationale

- tfolios with coal through 2042 for Scorecard metric & evaluation
- ble refuel date that provides sufficent lead time
- ne natural gas conversion
- ble retirement date that provides sufficient lead re capacity
- pecific unit retirement dates provides sufficient
- procure capacity

Strategy: No Changes to Existing Portfolio

Strategy: Petersburg Refuel in 2025

Strategy: One Petersburg Unit Retires

Strategy: Both Petersburg Units Retire

98

IRP Scenario Framework & Driving Assumptions

IRP Scenarios

AES Indiana will model the four <u>strategies</u> for the generation portfolio across four <u>scenarios</u>:

- A. No Environmental Action "NoEnv"
- B. Current Trends (Reference Case) "Ref"
- C. Aggressive Environmental "AE"
- D. Decarbonized Economy "Decarb"

IRP Commodity Assumptions for the Scenarios

AES Indiana has contracted Horizons Energy to produce custom fundamental commodity forecasts for the four IRP Scenarios – No Environmental Action, Current Trends (Reference Case), Aggressive Environmental and Decarbonized Economy.

- Horizons Energy is modeling AES Indiana's environmental policy and fuel price assumptions associated with each scenario to produce scenario-specific fundamental forecasts for the MISO system.
- Horizons Energy uses the EnCompass model for capacity expansion of the MISO System in producing the custom fundamental forecasts.
- Fundamental Curve modeling results include:
 - ATC, On-Peak and Off-Peak Power Prices
 - Capacity Prices
- The No Environmental Action, Current Trends (Reference Case), Aggressive Environmental and Decarbonized Economy custom fundamental forecasts are currently in production with Horizons Energy.

Scenario "NoEnv": No Environmental Action

Driving Assumptions							
Scenario	Load	EV	PV	Power	Gas	Coal	CO2
No Environmental Action	Low	Low	Low	TBD	Low	Base	None

Scenario Narrative

- Future defined by relaxed environmental regulations, expanded fracking and low demand with \rightarrow low electrification.
- Inflation persists driving low GDP & customer growth. \rightarrow
- Continued coal operation combined with expanded gas production result in low gas prices. \rightarrow

Scenario "NoEnv": No Environmental Action – Load Assumptions

	5
Load Forecast: Low Case	3
Driven by Moody's Economics S3: Alternative Scenario 3 – Downside – 90 th	3
Percentile	3
Electric Vehicle Forecast:	3
Low Case EV market share of 12% in 2042	≥ 3 ≥
Distributed Solar Forecast:	3
Low Case	2
Market adoption of 6% in 2042	2
	2
	2

Scenario "NoEnv": No Environmental Action – Environmental Policy Assumptions

ITC: No subsidy extension; Current tax subsidy schedule – declines to 10% by 2028 and remains at 10% through analysis period **PTC:** No subsidy extension; Current tax subsidy schedule – safe harbor period expires in 2027 Carbon: None

Additional Coal-fired Production Costs: None

Scenario "Ref": Current Trends (Reference Case)

Driving Assumptions							
Scenario	Load	EV	PV	Power	Gas	Coal	CO2
Current Trends	Base	Base	Base	TBD	Base	Base	Low

Scenario Narrative

- Congressional gridlock persists with stalled progress on passing sweeping environmental legislation. \rightarrow
- The ITC and PTC given single year extensions for the next five years. \rightarrow
- Assumes modest price for carbon starting at \$6.49/ton in the late 2020s. \rightarrow

Scenario "Ref": Current Trends – Load Assumptions

Load Forecast: Base Case with base Moody's economic assumptions
Electric Vehicle Forecast: Base Case EV market share of 22% in 2042
Distributed Solar Forecast: Base Case Market adoption of 15% in 2042

aes Indiana

Scenario "Ref": Current Trends – Environmental Policy Assumptions

ITC: Five-year extension – declines to 10% by 2032 and remains at 10% through analysis period

PTC: Five-year extension – safe harbor period expires in 2032

Carbon: Carbon set at \$6.49/ton starting in 2028 and escalating at 2.5% through planning period; Carbon price consistent with 1/3 the value of the Social Cost of Carbon as calculated by the U.S. Govt Interagency Working Group on Social Cost of Greenhouse Gases

Additional Coal-fired Production Costs: None

https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf

Scenario "AE": Aggressive Environmental

Driving Assumptions								
Scenario	Load	EV	PV	Power	Gas	Coal	CO2	
Aggressive Environmental	High	High	High	TBD	High	Base	High	

Scenario Narrative

- \rightarrow Congress passes environmental legislation that includes carbon tax starting in 2035.
- → ITC and PTC extensions are consistent with Build Back Better.
- → Includes high demand scenario with high electric vehicle and solar forecasts
- \rightarrow Near term transition from coal to natural gas results in high gas prices.

Scenario "AE": Aggressive Environmental – Load Assumptions

	3,60
High Case driven by Moody's S1: Alternative	3,50
Scenario 1 – Upside – 10 th Percentile	3,40
Electric Vehicle Forecast:	3,30
High Case	3,20
EV market share of 44% in 2042	≩ 3,10
Distributed Solar Forecast:	3,00
Market adoption of 29% in 2042	2,90
	2,80
	2,70
	2,60

Scenario "AE": Aggressive Environmental – Environmental Policy Assumptions

ITC: Ten-year extension – declines to 10% by 2042 and remains at 10% through analysis period

PTC: Ten-year extension – safe harbor period expires in 2042

Carbon: Carbon set at \$26.64/ton starting in 2035 and escalating at 5% through planning period; Carbon price consistent with the whole value of the Social Cost of Carbon as calculated by the U.S. Govt Interagency Working Group on Social Cost of Greenhouse Gases.

Additional Coal-fired Production Costs:

1 Additional cost for coal ash disposal

110

Scenario "Decarb": Decarbonized Economy

Driving Assumptions							
Scenario	Load	EV	PV	Power	Gas	Coal	CO2
Decarbonized Economy	High	Very High	High	TBD	Base	Base	None*

*Carbon targets will be modeled through a National Renewable Portfolio Standard

Scenario Narrative

- Congress passes aggressive decarbonization mandate on power sector with explicit renewable \rightarrow energy targets.
- High ITC/PTC runs through planning horizon. \rightarrow
- Carbon targets achieved through a Renewable Portfolio Standard that targets Net Zero; not a \rightarrow market mechanism like a carbon tax or cap and trade.
- High load driven by electrification \rightarrow
- Base gas prices driven by low demand due to reduced gas generation. \rightarrow

Scenario "Decarb": Decarbonized Economy – Load Assumptions

Load Forecast: High Case driven by Moody's S1: Alternative Scenario 1 – Upside – 10 th Percentile	
Electric Vehicle Forecast: Very High Case EV market share of 85% in 2042	
Distributed Solar Forecast: High Case Market adoption of 29% in 2042	

--- Low Summer Peak + High EV + High Solar --- High Summer Peak + High EV + High Solar

Scenario "Decarb": Decarbonized Economy – Environmental Policy Assumptions

ITC: 30% throughout the planning period

PTC: 100% through entire period

Carbon: No price on Carbon; Renewable Portfolio Standard similar to Clean Energy Performance Program (CEPP)

Additional Coal-fired Production Costs:

- 1 Additional cost for coal ash disposal
- 2 High Ozone Season NOx price forecast

Summary of Scenario Driving Assumptions

Scenario	Load	EV	Dist Solar	Power	Gas	Coal	CO2
No Environmental Action – "No Env"	Low	Low	Low	TBD	Low	Base	None
Current Trends (Reference Case) – "Ref"	Base	Base	Base	TBD	Base	Base	Low
Aggressive Environmental – "AE"	High	High	High	TBD	High	Base	High
Decarbonized Economy – "Decarb"	High	Very High	High	TBD	Base	Base	None*

*Carbon targets will be modeled through a National Renewable Portfolio Standard

Final IRP Portfolio Matrix

Final Portfolio Matrix

Combining Strategies and Scenarios results in the Portfolio Matrix or framework for IRP evaluation:

		Scenarios					
		No Environmental Action	Current Trends (Reference Case)	Aggressive Environmental	Decarbonized Economy		
gies	No Early Retirement	No Retire/NoEnv	No Retire/Ref	No Retire/AE	No Retire/Decarb		
ı Strate	Pete Refuel to 100% Gas (est. 2025)	Refuel/NoEnv	Refuel/Ref	Refuel/AE	Refuel/Decarb		
ratior	One Pete Unit Retires (2026)	One Unit/NoEnv	One Unit/Ref	One Unit/AE	One Unit/Decarb		
Gene	Both Pete Units Retire (2026 & 2028)	Both Units/NoEnv	Both Units/Ref	Both Units/AE	Both Units/Decarb		

- The 16 portfolios defined above will be evaluated using a Scorecard that includes cost, environmental, \rightarrow reliability & risk metrics.
- A Preferred Resource Portfolio will be selected using this rigorous Scorecard evaluation process. \rightarrow

Risk Analysis: Sensitivities & Stochastic

Risk Analysis

- Key variable sensitivities \rightarrow
 - AES Indiana will model sensitivities for key variables to understand how the PVRR may change in a future where the variable looks very different from the IRP assumption, e.g. renewable capital cost sensitivity.

Portfolio sensitivities \rightarrow

- AES Indiana will model environmental policy sensitivities on the optimized capacity expansion results from the Current Trends (Reference Case) to understand how the PVRR may change in a very different policy future.
- The results will help to answer the question "How would the optimized Reference Case perform in a very different policy future, e.g. Reference Case in a Decarbonized Economy future?"

Stochastic Analysis \rightarrow

• AES Indiana will run a stochastic analysis on fuel prices, energy prices and load in order to understand the risk to PVRR in the Reference Case from these key IRP variables.

Further detail regarding the Risk Analysis will be presented in Public Advisory Meeting #3.

Final Q&A and Next Steps

Public Advisory Meeting

- \rightarrow All meetings will be available for attendance via Teams. Meetings in 2022 may also occur in-person.
- → A Technical Meeting will be held the week preceding each Public Advisory Meeting for stakeholders with nondisclosure agreements. Tech Meeting topics will focus on those anticipated at the next Public Advisory Meeting.
- Meeting materials can be accessed at <u>www.aesindiana.com/integrated-resource-plan</u>.

Thank You

APPENDIX

IRP Acronyms

Note: A glossary of acronyms with definitions is available at <u>https://www.aesindiana.com/integrated-resource-plan</u>.

IRP Acronyms

- ACEE: The American Council for an Energy-Efficient Economy
- AMI: Advanced Metering Infrastructure
- BESS: Battery Energy Storage System
- BNEF: Bloomberg New Energy Finance
- BTA: Build-Transfer Agreement
- BTU: British Thermal Unit
- C&I: Commercial and Industrial
- CAA: Clean Air Act
- CAGR: Compound Annual Growth Rate
- CCGT: Combined Cycle Gas Turbines
- CCS: Carbon Dioxide Capture and Storage
- CDD: Cooling Degree Day
- COD: Commercial Operation Date
- CONE: Cost of New Entry
- CP: Coincident Peak
- CPCN: Certificate of Public Convenience and Necessity
- CT: Combustion Turbine
- CVR: Conservation Voltage Reduction
- DER: Distributed Energy Resource
- DG: Distributed Generation
- DGPV: Distributed Generation Photovoltaic System
- DLC: Direct Load Control
- DOE: U.S. Department of Energy
- DR: Demand Response
- DRR: Demand Response Resource
- DSM: Demand-Side Management
- DSP: Distribution System Planning
- 123 EE: Energy Efficiency

- EFORd: Equivalent Forced Outage Rat
- EIA: Energy Information Administration
- ELCC: Effective Load Carrying Capabil
- EM&V: Evaluation Measurement and V
- EV: Electric Vehicle
- GDP: Gross Domestic Product
- GT: Gas Turbine
- HDD: Heating Degree Day
- HVAC: Heating, Ventilation, and Air Cor
- IAC: Indiana Administrative Code
- IC: Indiana Code
- ICAP: Installed Capacity
- ICE: Internal Combustion Engine
- IRP: Integrated Resource Plan
- ITC: Investment Tax Credit
- IURC: Indiana Regulatory Commission
- kW: Kilowatt
- kWh: Kilowatt-Hour
- LED: Light Emitting Diode
- LMR: Load Modifying Resource
- LNBL: Lawrence Berkeley National Lab
- Max Gen: Maximum Generation Emerge
- MAP: Maximum Achievable Potential
- MIP: Mixed Integer Programming
- MISO: Midcontinent Independent Syste
- MPS: Market Potential Study
- MW: Megawatt
- NDA: Nondisclosure Agreement
- NOX: Nitrogen Oxides

ate Demand	 NPV: Net Present Value
n	NREL: National Renewable Energy Laboratory
oility	 NTG: Net to Gross
Verification	 PPA: Power Purchase Agreement
	 PRA: Planning Resource Auction
	PTC: Renewable Electricity Production Tax Credit
	 PRMR: Planning Reserve Margin Requirement
	 PV: Photovoltaic
onditionina	 PVRR: Present Value Revenue Requirement
0	PY: Planning Year
	RA: Resource Adequacy
	RAN: Resource Availability and Need
	RAP: Realistic Achievable Potential
	 REC: Renewable Energy Credit
	REP: Renewable Energy Production
'n	 RFP: Request for Proposals
	 RIIA: MISO's Renewable Integration Impact Assessment
	 SAC: MISO's Seasonal Accredited Capacity
	 SCR: Selective Catalytic Reduction System
	 SMR: Small Modular Reactors
aboratory	ST: Steam Turbine
rgency Warning	 SUFG: State Utility Forecasting Group
	 TRM: Technical Resource Manual
	UCT: Utility Cost Test
tem Operator	 UCAP: Unforced Capacity
	 WTP: Willingness to Participate
	 XEFORd: Equivalent Forced Outage Rate Demand excluding
	causes of outages that are outside management control

Replacement Resource Cost Assumptions Summary Table (of all parameters by tech type)

	Wind	Solar	Storage	Solar + Storage	CCGT	Frame CT	Aero CT	Reciprocating Engine
Fuel type:	Wind	Solar	Battery	Solar + Battery	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Unsubsidized Capital Cost (\$/kWac):	\$1,451	\$1,111	\$1,310	\$1,126	\$1,026	\$872	\$1,335	\$1,283
*Subsidized Capital Cost (\$/kWac):	\$1,002	\$803	N/A	\$882	N/A	N/A	N/A	N/A
Fixed O&M (\$/kW-yr):	\$37	\$21	\$36	\$25	\$32	\$30	\$36	\$46
Variable O&M (\$/MWh):	\$0	\$0	\$0	\$0	\$2	\$1	\$5	\$6
Grid Connection Cost (\$/kWac):	\$26	\$54	\$59	\$54	\$30	\$30	\$30	\$30
<pre>**Tax Equity Cost (\$/kWac):</pre>	\$59	\$59	N/A	\$59	N/A	N/A	N/A	N/A
				25 MW POI, 32.5 MWdc				
	50	25	20 MW 80 MWh	Solar, 12.5 MW 50	325	100	90	54
Size (POI MW):				MWh Battery				
Asset Useful Life (years):	30	35	20	31	30	20	20	20
Capacity Factor:	33.6-40.4%	24.5%	N/A	20.0%	Varies	Varies	Varies	Varies
Summer ELCC (2025):	7%	59%	96%	100%	94%	96%	96%	96%
Summer Capacity Credit (2025):	4	15	19	25	306	96	86	52
leat Rate at Max Econ Load (Btu/kWh):	N/A	N/A	N/A	N/A	6,700	10,000	8,200	7,400
Ramp Rate (MW/min):	N/A	N/A	N/A	N/A	20	12	43	37
WACC:	6.7%	6.7%	6.7%	6.7%	6.7%	6.7%	6.7%	6.7%
Estimated LCOE (2022\$/MWh):	\$30	\$38	\$113	\$53	\$44	\$120	\$69	\$61

*Includes 26% ITC for solar and \$15/MWh PTC for wind consistent with the Current Trends Scenario

**Cost only considered when resource is subsidized

***Storage LCOS assumes one full discharge per day; Dispatchable resources LCOE calculations highly dependent on capacity factor

DSM Market Potential Study

APPENDIX SLIDES

Demand Response Assumptions – Residential Load Reduction

Program	Residential Load Reduction Per Participant
riogram	
DLC Central AC Switch	0.972 kW
DLC Central AC Thermostat	0.846 kW
DLC Smart Appliances	0.072 kW
DLC Water Heaters	0.4 kW Summer, 0.8 kW Winter
DLC Electric Space Heaters	1 kW
DLC Electric Vehicle Chargers	0.63 kW
Battery Energy Storage	3 kW
Time of Use Rate with Enabling Technology	8% of CP billing demand
Time of Use Rate without Enabling Technology	5.2% of CP billing demand
Behavior DR	12.9% of CP billing demand

5 2022 IRP

Demand Response Assumptions – Non-Residential Load Reduction

Program
DLC Central AC Switch
DLC Central AC Thermostat
DLC Water Heaters
DLC Electric Space Heaters
DLC Lighting
Curtail Agreements
Demand Bidding
Capacity Bidding
Time of Use Rate with Enabling Technology
Time of Use Rate without Enabling Technology

127

Non-Residential Load Reduction Per Participant

1.103 kW

0.96 kW

0.6 kW Summer, 1.2 kW Winter

1.5 kW

8.9% of CP billing demand

5% of CP billing demand for day ahead, 3% day of

7% of CP billing demand

19.5% of CP billing demand

3.8% of CP billing demand

2% of CP billing demand

Demand Response Assumptions – Residential Costs

Program	Equipment & Installation Cost	Incentive Cost
DLC Central AC One-Way Communicating Switch	\$220	\$20/participant/year
DLC Central AC Two-Way Communicating Switch	\$245	\$20/participant/year
DLC Central AC Thermostat	\$300	\$20/participant/year
DLC Smart Appliances	\$245	\$20/participant/year
DLC Water Heaters	\$300	\$20/participant/year
DLC Electric Space Heaters	\$0; assumed must be participating in DLC AC program	\$20/participant/year
DLC Electric Vehicle Chargers	\$0; assumed must have Level 2 charger	\$50/participant/year
Battery Energy Storage	\$12,385	\$0
Time of Use Rate with Enabling Technology	\$300	\$0
Time of Use Rate without Enabling Technology	\$0	\$0
Behavior DR	\$0	\$0.75/kWh

2022 IRP

Demand Response Assumptions – Non-Residential Costs

Program	Equipment & Installation Cost	Incentive Cost		
DLC Central AC One-Way Communicating Switch	\$220	\$30/participant/year		
DLC Central AC Two-Way Communicating Switch	\$245	\$30/participant/year		
DLC Central AC Thermostat	\$300	\$30/participant/year		
DLC Water Heaters	\$300	\$30/participant/year		
DLC Electric Space Heaters	\$0; assumed must be participating in DLC AC program	\$30/participant/year		
DLC Lighting	\$1,900			
Curtail Agreements	\$0	Starts at \$87/kW-yr for MAP and \$47/kW-yr for RAP; increases by 2% per year		
Demand Bidding	\$0	\$0.5/kWh-yr		
Capacity Bidding	\$0	\$8.50/kW-yr		
Time of Use Rate with Enabling Technology	\$300	\$0		
Time of Use Rate without Enabling Technology	\$0	\$0		
Ice Energy Storage Rate	\$55,000	\$0		
129 2022 IRP		GDS Associates, Inc. ENGINEERS & CONSULTANTS brightline GROUP		

Demand Response Assumptions – Adoption Rates

Residential Adoption R	ates		Non-Residential Adopt	tion Rates	
Program	ΜΑΡ	RAP	Program	MAP	RAP
DLC Central AC (Switch and Thermostat Total)	71%	41%	DLC Central AC (Switch and Thermostat Total)	14%	3%
DLC Smart Appliances	31%	20%	DLC Water Heaters	16%	7%
DLC Water Heaters	65%	35%	DLC Electric Space Heaters	1 / 0/	20/
DLC Electric Space Heaters	20%	15%		1470	570
			DLC Lighting	14%	3%
DLC Electric Vehicle Chargers	72%	27%	Demand Bidding	8%	1%
Battery Energy Storage	10%	5%	Capacity Bidding	21%	3%
Time of Use Rate (with and without Enabling Technology total)	64%	46%	Time of Use Rate (with and without Enabling Technology total)	74%	13%
Behavior DR	93%	21%	Ice Energy Storage Rate	81%	16%
2022 IRP				GDS Associates, Inc. ENGINEERS & CONSULTANTS	brightline aes India

GROUP